Purpose: Calculate the probability for rodent species to share ectoparasites based on geographic range overlap and distance.
Load packages and files. Calculating the overlap and range distance matrices was done in the map making section.
library(dplyr)
library(geotax)
library(reshape2)
library(ggplot2)
geopairs<- read.csv("RodPar_ChileR3Hanta.csv", header=TRUE) #Rodent-Parasite pairs
geo<- read.csv("OverlapMatrix.csv", header=TRUE, row.names=1) #range overlap matrix
cent <- read.csv("CentroidDist2.csv",header= TRUE, row.names=1) #range centroid distance matrix
Clean rodent-parasite pairs to only include rodents with geographic range data.
geopairs<- subset(geopairs, Rodent!="Cavia porcellus" & Rodent!="Ctenomys osgoodi" &
Rodent!="Ctenomys robustus" & Rodent!="Octomys mimax" &
Rodent!= "Ctenomys colburni" & Parasite!= "Hantavirus")
Use the GeoTax package to build a binary interaction matrix between rodents and ectoparasites and perform a logistic regression on the entire dataset and for each ectoparasite.
incidence <- get_incidence_matrix(geopairs, returnDataFrame=FALSE) #creates binary interaction matrix
incidence<- incidence[ ,row.names(geo)]
incidence<- subset(incidence, rowSums(incidence)>3) #filter to only ectoparasites with more than 3 relationships for logistic regression
colnames(geo)<- row.names(geo)
coef_all <- log_reg_boostrap(incidence, geo, 1000) #logistic regression for the entire dataset
coef <- sapply(1:nrow(incidence), function(x)
log_reg_boostrap(incidence[x, , drop=F], geo, 1000) ) #log reg for each ectoparasite
colnames(coef)<- rownames(incidence)
write.csv(coef, "coeflap_nohanta.csv")
write.csv(coef_all, "coef_alllap_nohanta.csv")
The overall logistic regression coefficients for range overlap 3.0738603 and intercept: -2.8273699.
Now, use the logistic regression coefficients to calculate probability vectors.
GD <- seq(0, 1,0.01 ) #vector on which to calculate probabilities
coefval <- t(coef)[ ,c(1,7)]
coef_allval<- c(coef_all[["intercept"]], coef_all[["slope"]] )
reg <- apply(coefval, 1, function(x) {
prob_logit(x, GD)} ) #calculate probabilities for each ectoparasite
reg_all <- prob_logit(coef_allval, GD) #probabilities for overall dataset
The probability vectors can be used to plot the probability of sharing ectoparasites based on range overlap between rodents. First, the probability vectors need to be combined with the scale for geographic overlap (GD) and then we can plot with ggplot.
plotreg<- cbind(reg, GD)
plotreg<-cbind(plotreg, reg_all)
plotreg<-as.data.frame(plotreg)
preg<- melt(plotreg, id.vars = 'GD', variable.name = 'series')
adj_names <- sort(setdiff(unique(preg$series), "reg_all"))
gg_color_hue <- function(n) {
hues = seq(0, 0, length = n)
hcl(h = hues, l =80, c = 0)[1:n]
}
values <- gg_color_hue(length(adj_names))
names(values)<- adj_names
values<- c(values, c(reg_all="red"))
gglap<-ggplot(preg, aes(x=GD, y=value, colour=series))+
geom_line(show.legend=F)+ theme_minimal()+
scale_colour_manual(values=values)+
xlab("Geographic Range Overlap between Rodents")+
ylab("Probability of Sharing Ectoparasites")
gglap
Now time to look at the geographic distance (#2), doing the same analysis:
incidence2 <- get_incidence_matrix(geopairs, returnDataFrame=FALSE)
incidence2<- incidence2[, row.names(cent)]
incidence2<- subset(incidence2, rowSums(incidence2)>3)
colnames(cent)<-row.names(cent)
coef_all2 <- log_reg_boostrap(incidence2, cent, 1000)
coef2 <- sapply(1:nrow(incidence2), function(x)
log_reg_boostrap(incidence2[x, , drop=F], cent, 1000) )
colnames(coef2)<- rownames(incidence2)
GD2 <- seq(0, 40, 1)
coefval2 <- t(coef2)[ ,c(1,7)]
coef_allval2<- c(coef_all2[["intercept"]], coef_all2[["slope"]] )
reg2 <- apply(coefval2, 1, function(x) {
prob_logit(x, GD2)} )
reg_all2 <- prob_logit(coef_allval2, GD2)
write.csv(coef2, "coefcent_nohanta.csv")
write.csv(coef_all2, "coef_allcent_nohanta.csv")
The overall logistic regression coefficients for range distance are -0.1538226 and intercept: -0.6469068.
The probability vectors can be used to plot the probability of sharing ectoparasites based geographic range distance between rodents:
plotreg2<- cbind(reg2, GD2)
plotreg2<-cbind(plotreg2, reg_all2)
plotreg2<-as.data.frame(plotreg2)
preg2<- melt(plotreg2, id.vars = 'GD2', variable.name = 'series')
adj_names2 <- sort(setdiff(unique(preg2$series), "reg_all2"))
gg_color_hue <- function(n) {
hues = seq(0, 0, length = n)
hcl(h = hues, l =80, c = 0)[1:n]
}
values2 <- gg_color_hue(length(adj_names2))
names(values2)<- adj_names2
values2<- c(values2, c(reg_all2="red"))
ggcent<-ggplot(preg2, aes(x=GD2, y=value, colour=series))+
geom_line(show.legend=F)+ theme_minimal()+
scale_colour_manual(values=values2)+
xlab("Range Distance between Rodents")+
ylab("Probability of Sharing Ectoparasites")+
ylim(0,1)
ggcent